Cooperative deformation of mineral and collagen in bone at the nanoscale.

نویسندگان

  • Himadri S Gupta
  • Jong Seto
  • Wolfgang Wagermaier
  • Paul Zaslansky
  • Peter Boesecke
  • Peter Fratzl
چکیده

In biomineralized tissues such as bone, the recurring structural motif at the supramolecular level is an anisotropic stiff inorganic component reinforcing the soft organic matrix. The high toughness and defect tolerance of natural biomineralized composites is believed to arise from these nanometer scale structural motifs. Specifically, load transfer in bone has been proposed to occur by a transfer of tensile strains between the stiff inorganic (mineral apatite) particles via shearing in the intervening soft organic (collagen) layers. This raises the question as to how and to what extent do the mineral particles and fibrils deform concurrently in response to tissue deformation. Here we show that both mineral nanoparticles and the enclosing mineralized fibril deform initially elastically, but to different degrees. Using in situ tensile testing with combined high brilliance synchrotron X-ray diffraction and scattering on the same sample, we show that tissue, fibrils, and mineral particles take up successively lower levels of strain, in a ratio of 12:5:2. The maximum strain seen in mineral nanoparticles (approximately 0.15-0.20%) can reach up to twice the fracture strain calculated for bulk apatite. The results are consistent with a staggered model of load transfer in bone matrix, exemplifying the hierarchical nature of bone deformation. We believe this process results in a mechanism of fibril-matrix decoupling for protecting the brittle mineral phase in bone, while effectively redistributing the strain energy within the bone tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanomechanics of Post-yield Deformation of Cortical Bone under Compression using Novel Synchrotron X-ray Scattering Techniques

INTRODUCTION Although bulk post-yield behavior of bone has been extensively reported in the literature, its underlying mechanism at ultrastructural level is still poorly understood. Lack of such knowledge has significantly hindered our understanding of age-related deterioration in bone quality. To address this issue, a mechanistic understanding of the post-yield behavior of bone becomes necessa...

متن کامل

Large Deformation Mechanisms, Plasticity, and Failure of an Individual Collagen Fibril With Different Mineral Content

Mineralized collagen fibrils are composed of tropocollagen molecules and mineral crystals derived from hydroxyapatite to form a composite material that combines optimal properties of both constituents and exhibits incredible strength and toughness. Their complex hierarchical structure allows collagen fibrils to sustain large deformation without breaking. In this study, we report a mesoscale mod...

متن کامل

Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone.

In this paper, a multitechnique experimental and numerical modeling methodology was used to show that mineral content had a significant effect on both nanomechanical properties and ultrastructural deformation mechanisms of samples derived from adult bovine tibial bone. Partial and complete demineralization was carried out using phosphoric and ethylenediamine tetraacetic acid treatments to produ...

متن کامل

Deformation of mineral crystals in cortical bone depending on structural anisotropy.

The deformation mechanism of bone at different hierarchical levels has been of wide interest. The important features of bone, its anisotropy and orientation dependent deformation are equally important, which have also gained a long run discussion. Most of the studies are concentrated on protein-rich collagen fibres and matrix, where different deformation mechanisms at the lower length scales ar...

متن کامل

Molecular mechanics of mineralized collagen fibrils in bone

Bone is a natural composite of collagen protein and the mineral hydroxyapatite. The structure of bone is known to be important to its load-bearing characteristics, but relatively little is known about this structure or the mechanism that govern deformation at the molecular scale. Here we perform full-atomistic calculations of the three-dimensional molecular structure of a mineralized collagen p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 47  شماره 

صفحات  -

تاریخ انتشار 2006